第一课堂网
 数学 |  手机版 

栏目类型

数学

勾股定理论文(共9篇)

时间:2019-02-09 来源:数学 点击:

篇一:勾股定理论文

八上数学论文(1000字)

我这儿有一个勾股定理的论文,我自个儿做的,你参考一下吧
勾股定理的应用与证明
摘要 直角三角形是三角形中较为特殊的一种,那么这种特殊的三角形有什么性质呢,在生活中又有什么应用呢?人们将直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem).数学公式中常写作a2+b2=c2.本文将探究勾股定理的应用以及它的多种证明方式,并进行讨论.
一、前言
如果直角三角形两直角边分别为a、b,斜边为c,那么 ;; 即直角三角形两直角边长的平方和等于斜边长的平方.
如果三角形的三条边A,B,C满足A2+B2=C2;,还有变形公式:AB= ,如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形.(称勾股定理的逆定理)
上面就是勾股定理.
毕达哥拉斯树
毕达哥拉斯树由无数直角三角形与正方形构成.形状好似一棵树,所以被称为毕达哥拉斯树.
因为直角三角形两个直角边平方的和等于斜边的平方.所以两个相邻的小正方形面积的和等于相邻的一个大正方形的面积.
这么有趣的图案根据勾股定理所画出来的一个可以无限重复的图形.
可见,勾股定理十分有趣.
二、应用及证明方式
1、最早勾股定理的应用
从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例.例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB )竖直靠在墙上,上端(A)下滑一米至D.问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,
设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米
∵a= = =3米,∴三角形BDC正是以3、4、5为边的直角三角形.
2、赵爽弦图及青朱出入图
赵爽弦图
在幅弦图中,以弦为边长得到的正方形是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积都为 ;中间小正方形边长为(b-a),则面积为(b-a)2.于是便可得如下的式子:
4× +(b-a)2=c2
化简后便可得:
3、欧几里德射影定理证法
如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:
(1) =AD?DC,(2) =AD?AC ,(3) =CD?AC .
由公式(2)+(3)得:
+ =AD?AC+CD?AC =(AD+CD)?AC= ,
+ =
这就是勾股定理的结论.

篇二:勾股定理论文

急需关于"勾股定理"的应用的例子
写论文用的一些关于"勾股定理"的应用的例子,可以是生活中的和数学中的,【勾股定理论文】

在数轴上画无理数可以用到"勾股定理" 比如根号2 就可以利用"勾股定理"先算出一个小正方形的边长 再在数轴上画出 最后利用圆规和对角线将根号二画出

篇三:勾股定理论文

有关勾股定理的资料,写成小论文

勾股定理
[gōu gǔ dìng lǐ]
更多图片(29张)
勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,(a,b,c)叫做勾股数组。
勾股定理现约有400种证明方法,是数学定理中证明方法最多的定理之一
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最着名的例子。
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了勾股定理。(商高定理)
中文名:勾股定理
外文名:Pythagoras theorem
别称:商高定理、毕达哥拉斯定理
表达式:a²+b²=c²
提出者:赵爽
提出时间:公元前550年
应用学科:几何学
适用领域范围:数学,几何学
适用领域范围:程序设计,软件
中国记载着作:《周髀算经》《九章算术》
外国记载着作:《几何原本》

【勾股定理论文】

篇四:勾股定理论文

中国数学家对勾股定理的证明有哪些?
一定要是中国数学家,古代近代都可以,需要证法,写论文急用,【勾股定理论文】

《周髀算经》算经十书之一.约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学着作,主要阐明当时的盖天说和四分历法.唐初规定它为国子监明算科的教材之一,故改名《周髀算经》.《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用.原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的.《周髀算经》使用了相当繁复的分数算法和开平方法.对于勾股定理,记曰:“数之法,出于圆方,方出于矩,距出于九九八十一,故折矩,以为勾三,股四,弦五.直角三角形之间的关系:两条直角边的平方和等于斜边的平方,(a*a)+(b*b)=(c*c)”
三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方.以盈补虚,将朱方、青放并成玹方.依其面积关系有a^2+b^2=c^2.由于朱方、青方各有一部分在玄方内,那一部分就不动了.
以勾为边的的正方形为朱方,以股为边的正方形为青方.以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c……2 ).由此便可证得a2+b2=c2

篇五:勾股定理论文

勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理.中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多.请翻阅资料,写一篇关于勾股定理历史的小论文 300~500字左右 本人准初一,

给你个大纲吧,具体问题自己找资料梳理一下.
一、介绍勾股定理是什么
二、解释勾股定理为什么会产生?在古代有怎样的历史背景?比如几何学在建筑上的应用、地形测量的应用等.比如造城门,测量田地,修水坝(大禹治水)等等.通过勾股定理去判断直角
三、说明:我国的勾股定理是谁发现的?谁最早记录的?其他国家,比如埃及、雅典等,什么时候发现并记录了勾股定理?勾股定理在我国古代数学界又有怎样的运用和延伸?(九章算术--无理数、圆周率等)
四、通过发现勾股定理,给我们带来了怎样的财富?(测绘、航海、建筑、推动人类历史文明的发展,是中华民族古代科学思想的瑰宝等等)
五、站在自己的角度总结陈词.(数学是非常奇妙的,勾三、股四、弦五,简简单单的一条定理在人们智慧的发现和运用下竟有着上天入地的本领.所以要好好学习数学,等等,爱咋写咋写~)

篇六:勾股定理论文

我国现有文献中最早引用勾股定理的是?

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明.采用的是割补法.

篇七:勾股定理论文

证明勾股定理的方法
我要的不是把直角三角形拼起来的那种,我要的是就用一个直角三角形证明

.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等.
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等.从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等.左图剩下两个正方形,分别以a、b为边.右图剩下以c为边的正方形.于是
a^2+b^2=c^2.
这就是我们几何教科书中所介绍的方法.既直观又简单,任何人都看得懂.
2.希腊方法:直接在直角三角形三边上画正方形,如图.
容易看出,
△ABA’ ≌△AA"C .
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’.
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半.由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积.同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积.
于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2.
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明).这里只用到简单的面积关系,不涉及三角形和矩形的面积公式.
这就是希腊古代数学家欧几里得在其《几何原本》中的证法.
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积.
这是完全可以接受的朴素观念,任何人都能理解.
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明.采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的.即“勾股各自乘,并之为弦实,开方除之,即弦也”.
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观.
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的.据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺.故西方亦称勾股定理为“百牛定理”.遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法.

篇八:勾股定理论文

初中生全等三角形论文最好有有关难题的探讨.

全等三角形的证明一直是数学中的一朵奇葩,它不仅是考试中的一个重要考点,而且可以培养学生初步的证明问题的能力.而且,全等三角形问题的难度非常灵活,下面笔者介绍一种分析全等的方法,可以解决较复杂的全等三角形证明问题.
利用已知线段锁定三角形,缩小证明范围证明三角形全等.
例1:如下图所示.BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ.
分析:第一问由于有对应边的关系CQ=AB,进而猜想△QCA≌△ABP,由于BD⊥AC,CE⊥AB,可得∠ABD=∠ACE,即可得出结论.第二问在第一问的基础上,证明∠PAQ=90°即可.
证明:(1)∵BD⊥AC,CE⊥AB(已知),
∴∠ABD+∠BAC=90°,∠ACE+∠BAC=90°(垂直定义),
∴∠ABD=∠ACE(等量代换),
又∵BP=AC,CQ=AB(已知),
∴△ABP≌△QCA(SAS),
∴AP=AQ(全等三角形对应边相等).
(2)由(1)可得∠CAQ=∠P(全等三角形对应角相等),
∵BD⊥AC(已知),即∠P+∠CAP=90°(三角形内角和等于180°),
∴∠CAQ+∠CAP=90°(等量代换),即∠QAP=90°,
∴AP⊥AQ(垂直定义).
说明:本题充分体现用已知线段缩小寻找范围的优点,同学们可以迅速锁定要证明的三角形全等是△QCA≌△ABP,做到又快又准.
例2:已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
分析:△ABC为等边三角形,隐含条件是AB=AC=BC,通过观察,发现AB和AC确定的两个三角形有可能全等,即∴△ABD≌△ACF,结合四边形ADEF是菱形的条件,迅速解出本题.
⑴①证明:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°
∵∠DAF=60°
∴∠BAC=∠DAF
∴∠BAD=∠CAF
∵四边形ADEF是菱形,∴AD=AF
如图4所示.
∴△ABD≌△ACF
∴∠ADB=∠AFC
②结论:∠AFC=∠ACB+∠DAC成立.
⑵结论∠AFC=∠ACB+∠DAC不成立.
∠AFC、,∠ACB、∠DAC之间的等量关系是
∠AFC=∠ACB-∠DAC(或这个等式的正确变式)
证明:∵△ABC为等边三角形
如图5所示.
∴AB=AC
∠BAC=60°
∵∠BAC=∠DAF
∴∠BAD=∠CAF
∵四边形ADEF是菱形
∴AD=AF.
∴△ABD≌△ACF
∴∠ADC=∠AFC
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB-∠DAC
⑶补全图形如图6所示.
∠AFC、∠ACB、∠DAC之间的等量关系是
∠AFC=2∠ACB-∠DAC
(或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式)
说明:本题有一定的难度,证明全等时不好找对应的条件,甚至连全等的三角形都不好确定,但利用线段相等很快锁定目标,大大提高了解题效率.
例3:如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.
(1)求证:△ACD≌△BCE;
(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.
如图7所示.
分析:第一问由△ABC是等边三角形,可得AC=BC,想到证明它们所在的三角形全等,即△ACD≌△BCE,结合△DCE是等边三角形,DC=EC,∠ACB=∠DCE=60°,又由∠ACD+∠DCB=∠ECB+∠DCB=60°,即可证得∠ACD=∠BCE,可以方便的根据SAS,证得△ACD≌△BCE;
第二问首先过点C作CH⊥BQ于H,由等边三角形的性质,即可求得∠DAC=30°,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.
(1)∵△ABC与△DCE是等边三角形,
∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS);
(2)过点C作CH⊥BQ于H,
∵△ABC是等边三角形,AO是角平分线,
∴∠DAC=30°,
∵△ACD≌△BCE,
∴∠QBC=∠DAC=30°,
∴CH=BC=×8=4,
∵PC=CQ=5,CH=4,
∴PH=QH=3,
∴PQ=6.
如图8所示.
说明:此题考查了全等三角形的判定与性质,等腰三角形、等边三角形以及直角三角形的性质等知识.此题综合性较强,图形较为复杂,结合利用线段相等锁定要证明全等的三角形,可以很快证出题目.
从以上几例可以看出,以后我们解决三角形全等问题时可以先找出线段相等的条件,然后结合图形找出想要证明全等的三角形,证出它们全等,往往可以起到事半功倍的效果,同学们可以尝试着用这种方法证明题目,提高自己的解题效率.

篇九:勾股定理论文

收集10个有关坐标系 勾股定理 实数 等相关数学家的典故及数学故事

  1、蝴蝶效应
  气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」.就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的.Lorenz为何要写这篇论文呢?
  这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑.平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图.
  这一天,Lorenz想更进一步了解某段纪录的後续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的後续结果.当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵.在一小时後,结果出来了,不过令他目瞪口呆.结果和原资讯两相比较,初期数据还差不多,越到後期,数据差异就越大了,就像是不同的两笔资讯.而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别.所以长期的准确预测天气是不可能的.
  参考资料:阿草的葫芦(下册)——远哲科学教育基金会
  2、动物中的数学“天才”
   蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成.组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料.蜂房的巢壁厚0.073毫米,误差极小.  
  丹顶鹤总是成群结队迁飞,而且排成“人”字形.“人”字形的角度是110度.更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?  
  蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案.
  冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少.
  真正的数学“天才”是珊瑚虫.珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条.奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”.天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天.(生活时报)
  3、麦比乌斯带
  每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了.这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带.有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展.
  4、数学家的遗嘱
  阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩.“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一.”.
  而不幸的是,在孩子出生前,这位数学家就去世了.之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容.
  如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?
  5、火柴游戏
  一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最後一根火柴者获胜.
  规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?
  例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜?
  为了要取得最後一根,甲必须最後留下零根火柴给乙,故在最後一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜.如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏.同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取後留下4根火柴,最後也一定是甲获胜.由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券.因此若原先桌面上的火柴数为15,则甲应取3根.(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16).
  规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
  原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取.
  通则:有n支火柴,每次可取1至k支,则甲每次取後所留的火柴数目必须为k+1之倍数.
  规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1﹑3﹑7,则又该如何玩法?
  分析:1﹑3﹑7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴後获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的.因为〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴数奇偶相反.若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随後又把偶数变成奇数,甲又把奇数回覆到偶数,最後甲是注定为赢家;反之,若开始时为偶数,则甲注定会输.
  通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输.
  规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数).
  分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜.此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最後剩下2根,那时乙只能取1,甲便可取得最後一根而获胜.
  通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2. 6、韩信点兵
  韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…….刘邦茫然而不知其数.
  我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
  首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然後再加3,得9948(人).
  中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」
  答曰:「二十三」
  术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得.凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得.」
  孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理.中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位.

推荐访问:勾股定理论文1000 初中数学勾股定理论文

上一篇:初一数学教学反思(共10篇)
下一篇:烦恼作文(共9篇)