第一课堂网
 数学 |  手机版 

栏目类型

数学

数学在生活中的应用(共10篇)

时间:2018-09-07 来源:数学 点击:

篇一:数学在生活中的应用

数学知识在生活中的应用

最常见的:
比如说在建筑方面,面积,勾股定理什么的都很常用.
在经济方面,预算经济投入以及回收什么的,都需要数学方程组知识.就像学数学时候的应用题一样,那些都是数学在生活中的运用.还有很多的.就不一一说了

篇二:数学在生活中的应用

在生活中数学都有哪些方面的运用?【数学在生活中的应用】

其实数学在平常的实际生活中没有什么太大用处,其实也包括我们学的其它知识.在大学上高等数学时,老师说之所以学数学,就是锻炼人的逻辑思维能力.其它知识也莫过如此,学这些知识就是思想比较开阔些,理解新事物能力强些.
如果专门从事这方面研究是必须的.
其他人说的都是各专业领域中的模型公式和具体数学没有什么关系.具体数学无非是解决计算的工具,起辅助作用而已.

【数学在生活中的应用】

篇三:数学在生活中的应用

数学在生活中的应用
要是真实的,短一点,急用!

数学是一门很有用的学科.自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解.早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说.可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注).“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台.
如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用.譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识.此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用.由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了.
由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的.数学对推动人类文明起了举足轻重的作用.

篇四:数学在生活中的应用

数学问题在实际生活中的运用

数学问题在实际生活中可以解决一些实际问题.
对数螺线与蜘蛛网
曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐.摆下八卦阵,只等飞来将.”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形.我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具.
你观察过蜘蛛网吗?它是用什么工具编织出这么精致的网来的呢?你心中是不是有一连串的疑问,好,下面就让我来慢慢告诉你吧.在结网的过程中,功勋最卓着的要属它的腿了.首先,它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上.然后,再吐出一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住.为继续穿针引线搭好了脚手架.它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到中心时,把丝拉紧,多余的部分就让它聚到中心.从中心往边上爬的过程中,在合适的地方加几根辐线,为了保持蜘蛛网的平衡,再到对面去加几根对称的辐线.一般来说,不同种类的蜘蛛引出的辐线数目不相同.丝蛛最多,42条;有带的蜘蛛次之,也有32条;角蛛最少,也达到21条.同一种蜘蛛一般不会改变辐线数.
到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体 相同的.现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了.蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝.这是一条辅助的丝.然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线.在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上.这样半径上就有许多小球.从外面看上去,就是许多个小点.好了,一个完美的蜘蛛网就结成了.
让我们再来好好观察一下这个小精灵的杰作:从外圈走向中心的那根螺旋线,越接近中心,每周间的距离越密,直到中断.只有中心部分的辅助线一圈密似一圈,向中心绕去.小精灵所画出的曲线,在几何中称之为对数螺线.
对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角.大家可别小看了对数螺线:在工业生产中,把抽水机的涡轮叶片的曲面作成对数;螺线的形状,抽水就均匀;在农业生产中,把轧刀的刀口弯曲成对数螺线的形状,它就会按特定的角度来切割草料,又快又好.
猫捉老鼠
问题:如果3只猫在3分钟内捉住了3只老鼠,那么多少只猫将在100分钟内捉住100只老鼠?
这是一个古老的趣题,常见的答案是这样的:如果3只猫用3分钟捉住了3只老鼠,那么它们必须用1分钟捉住1只老鼠.于是,如果捉1只老鼠要花去它们1分钟时间,那么同样的3只猫在l00分钟内将会捉住100只老鼠.
遗憾的是,问题并不那么简单.刚才的解答实际上利用了某个假定,它无疑是题目中所没有谈到的.这个假定认为这3只猫把注意力全部集中于同一只老鼠身上,它们通过合作在1分钟内把它捉住,然后再联合把注意力转向另—只老鼠.
但是,假设3只猫换一个做法,每只猫各追捕1只老鼠,各花3分钟把它们捉住.按照这种设想,3只猫还是用3分钟捉住3只老鼠.于是,它们要花6分钟去捉住6只老鼠,花9分钟捉住9只老鼠,花99分钟捉住99只老鼠.现在我们面临着一个计算上的困难,同样的3只猫究竟要花多长时间才能捉住第100只老鼠呢?如果它们还是要足足花上3分钟去捉住这只老鼠,那么这3只猫得花l02分钟捉住102只老鼠.要在100分钟内捉住100只老鼠——这是题目关于猫捉老鼠的效率指标,我们肯定需要多于3只而少于4只的猫,因此答案只能是需要4只猫,虽然这有点浪费.
显然,对于3只猫是怎样准确地计算猫捉老鼠这种行动的时间,这个趣题没做任何交代.因此,如果允许答案不唯一,那么,答案可以是丰富多彩的,3只、4只、甚至更多.如果要求答案唯一的话,这个问题的唯一正确答案是:这是一个意义不明确的问题,由于没有更多关于猫是怎样捕捉老鼠的信息,因此无法回答这个问题.
这个简单的趣题启示我们,在解答一个数学问题(也包括其他问题)前,一定要仔细领会题目所给出的全部信息,既不要曲解题义,也不要人为添加条件以迎合所谓的标准答案.当然这个趣题也给了我们一个有益的人生启示——只有合作才能产生最佳的工作效益.
表面涂漆的小积木的块数
一块表面涂着红漆的大积木(正方体),被锯成27块大小一样的小积木,那么,这些小积木中,(1)三面涂漆的有几块?(2)两面涂漆的有几块?(3)一面涂漆的有几块?
这时,就不能再用把积木锯开的办法来回答问题了.但只需认真观察一下,你就能发现,把正方体锯开以后,只有位于正方体八个角上的那些小积木,是三面涂漆的.也就是说,三面涂漆的小积木的块数,等于正方体的顶点数,有8块;
涂漆的那些小积木,位于正方体的两个面的交界处,但不在正方体的角上(即顶点处).因此,只需首先确定正方体的某条棱上出现的两面涂漆的小积木的块数,而正方体有12条棱.于是,立即可以求得,两面涂漆的小积木的块数为1块×12=12块;
一面涂漆的小积木,位于正方体每个面的中心部位.即不在正方体的顶点处,也不在棱上.因此,只需首先确定正方体的某一个面上出现的一面涂漆的小积木的块数,而正方体有6个面.于是可得,一面涂漆的小积木的块数为1块×6=6块.
通过观察,找出解决问题的规律,是学习数学的重要任务之一.这样,就能运用数学知识迅速而又有效地解决实际问题.根据上面归纳出来的分析方法,即使把这个正方体锯成更多的小积木,我们也能轻松地回答类似的问题.
建议班级购买一台饮水机
在炎炎夏日里,同学们遇到的难事就是饮水问题,为了使同学们过一个卫生清洁的夏季,班级决定出钱买一台饮水机,而每人又应出多少钱呢?即使买了饮水机,是否比过去每个学生每天买矿泉水更节省、更实惠?下面就来解答这个问题.
一、学生矿泉水费用支出
温州市景山中学共有37个班级,假设每班学生平均为60人,那么全校就有60×37=2220(人).一年中,学生在校的时间(除去寒暑假双休日)大约为240天,设春季、夏季、秋季、冬季、各为60天,在班级没有购买饮水机时,学生解渴一般买矿泉水,设矿泉水每瓶为一元,学生春秋季每人二天1瓶矿泉水,则总共为60瓶.夏季每人每天1瓶,则总共也为60瓶,冬季每人每4天1瓶,总共为15瓶,则全年平均每名学生矿泉水费支出: 60+60+(60÷4)×1=135(元);全班学生矿泉水费用 135×60=8100(元);全校学生矿泉水费用:8100×37=299700(元).
二、使用饮水机费用
一台冷热饮水机的价格约为750元,1字牌大桶矿泉水为每桶10元,现每班都配备饮水机.设每班春、季两季、每2天1桶,则需60桶,夏季每天2桶,则需120桶,冬季每6天1桶,则每班需20桶,则一学年每班需要“60+120+20=200(桶),一学生每班水费为200×10=2000元.电费折合为每学年每班为300元.则一学年配置饮水机每班水电费2300元.所以,一学年每班饮水机等合计约为2300+750÷3=2550元;每个学生平均一学年的水电费为2500÷60=42.5元;景山中学全校全年饮水机等费用约为37×2550=94350元;
显然,通过计算,比较两项开支费用,各班购买一台饮水机要经济实惠得多,一学年每个学生可以节省:135-42.5=92.5元;每个班一学年可节省: 92.5×60=5550元;全校一学年可节省:5550×37=205350元.
205350元,一个了不起的数据,而我们每天又可以喝上卫生清洁、冷暖皆宜的饮水机的矿泉水,等我们毕业时还可以把饮水机赠给下届同学,何乐而不为呢?我向昌乐二中提出倡议:在每个教室里配一台饮水机.
巧用数学看现实
在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?
某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖 10000元 1名,一等奖1000元 2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?
面对问题我们并不能一目了然.于是我们首先作了一个随机调查.把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以.调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?
在实际问题中,甲商厚每组设奖销售的营业额和参加抽奖的人数都没有限制.所以我们认为这个问题应该有几种答案.
一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客.
二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共 14000元(10000+ 2000+ 1000+1000=14000).假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为 280000元( 14000 ÷ 5%=280000).
所以由此可得:
(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.
(2)当两商厦的营业额都不足 280000元时,乙商厦的优惠则小于 14000元,所以这时甲商厦提供的优惠仍是 14000元,优惠较大.
(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大.
像这样的问题,我们在日常生活中随处可见.例如,有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售.两站的优惠期限都是一年.你作为用户,应该选哪家好?
这个问题与前面的问题有很大相同之处.只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了.
随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率.运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”.
作为跨世纪的中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地适应社会的发展和需要.
希望能帮到你...

篇五:数学在生活中的应用

数学在生产、社会生活中的运用举例

1 银行利息的算法
2 贷款利息的算法
3 个人所得税的算法
和日常生活有关的也就这些,把这些搞明百九差不多了.
数学知识在生产生活中的应用
第一部分 函数的应用
我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种.这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的.这里重点讲前两类函数的应用.
一元一次函数的应用
一元一次函数在我们的日常生活中应用十分广泛.当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题.
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法.这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择.俗话说:“从南京到北京,买的没有卖的精.”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏.
下面,我就为大家讲述我亲身经历的一件事.
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用.一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见.更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款).其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个).由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决.
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当dS=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лV (当且仅当r =rh/2=>h=2r时取等号),
∴应设计为h=d的等边圆柱体.
2、“易拉罐”问题
圆柱体上下第半径为R,高为h,若体积为定值V,且上下底
厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最
省(即表面积最小)?
分析:应用均值定理,同理可得h=2d(计算过程请读者自己
写出,本文从略)∴应设计为h=2d的圆柱体.
事实上,不等式特别是均值不等式在生产实践中的应用远不止这些,在这里就不一一列举了.
第三部分 数列的应用
在实际生活和经济活动中,很多问题都与数列密切相关.如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决.
本文重点分析等差数列、等比数列在实际生活和经济活动中的应用.
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长.
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息.这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数.下面就来寻求这一问题的解决办法.
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
.
an+1=an(1+p)-a,.(*)
将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列.日常生活中一切有关按揭货款的问题,均可根据此式计算.
(二)有关数列的其他应用问题
数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的.读者朋友一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题.因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识.

【数学在生活中的应用】

篇六:数学在生活中的应用

数学在生活中的应用1500字论文,后天要交

举一个例子:利用数学知识计算装修时所用窗子的面积、长、宽等,或是利用二次函数计算喷泉的半径等.再阐述一下这些应用对于生活的意义,比如说是生活变得更方便等等.
参考范文:(网上搜来的,仅供参考)
着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在.而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处. 抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X15}由此得知P=0.999931,而盈利10000以上的概率也有0.98305,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 .据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏.许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来.   东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题.实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号.举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码.另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的.南京的“专业”彩民则介绍一条选号规则———逆向选号法.从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样.虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均.就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近.从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字.这就是逆向选号法,即选择上一次或前几次没中奖的数字.这也说明了概率的无所不在

篇七:数学在生活中的应用

关于数学在生活中的应用,包括金融、建筑中的应用
数学在建筑、金融方面的应用,或者说应用了数学的什么原理之类的,

建筑 运用了概率论、极限理论
很多啊,一栋建筑就是计算出来的【数学在生活中的应用】

篇八:数学在生活中的应用

生活中一些数学应用的相关知识

数学与生活.而且是小学数学.那就要从加减乘除 开始.最早的加发是怎么来的.古代人用绳子系扣 一个扣加一个扣等与两个.还有诸多的例子.计算对生活的帮助太多了.我们去买东西 就要用上加减法 还有换算.小学数学也有换算.有的时候也会用到乘除法.在小学应用题里有许多生活应用的东西.比如说追击问题. 相遇相对而行 等好多问题.在生活中用于计算时间. 还有最初的几何三角形正方形对于生活中做图问题的帮助更是很多.
例如学习了长方形、正方形面积的计算及组合图形的计算后,运用所学知识解决生活中的实际问题.如:XXX家有一间两室一厅的住房,如图:你能算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后计算;学生们回家测算一下自己家的实际居住面积.在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用.
在“比例的意义和基本性质”中,知道在我们人体上的许多有趣的比例吗?将拳头翻滚一周,它的长度与脚底长度的比大约是1:1,脚底长与身高长的比大约是1:7……知道这些有趣的比有很多用处,到商店买袜子,只要将袜子在你的拳头上绕一周,就会知道这双袜子是否合适你穿;如果你是一个侦探,只要发现罪犯的脚印,就可以估计出罪犯的身高……这些都是用身体的比组成了一个个有趣的比例 .
生活是教育的中心,“生活即教育”的理论为小学数学教学的改革开辟了广袤的原野.

篇九:数学在生活中的应用

求一篇关于数学在生活中具体应用的文章
忘了是几年前,也忘了是在什么地方看到过一篇文章,觉得很好,可惜当时没有保存到电脑里,现在想把它找出来.记得是一个数学老师写的,类似散文,很感人.总之他觉得现在的教学方法不好,学生学的也不好,他感觉很沮丧,就在文章里列出了很多数学能对日常生活起到帮助的例子,排比手法,很有意思.文章不太长.希望如果有谁知道这文章的名字,或者正好能给我发过来,感激不尽.

数学在生活中的应用
你可以搜一下,是可以找到的!望采纳

篇十:数学在生活中的应用

数学在生活中的运用的调查研究1000字.

生活离不开数学,数学离不开生活,数学知识源于生活而高于生活,最终服务于生活.的确,学数学就是为了能在实际生活中应用.数学就是人们用来解决实际问题的,其实数学问题就产生与生活中.比如:上街买东西要用到加减乘除法,修建房屋用到做平面图等,这样的问题数不胜数,这些知识就是在生活中产生的.在数学教学中,我们要给学生实践活动的机会,引导学生自觉运用数学知识,用数学知识和方法分析与解决生活中的实际问题,使生活问题数学化,从而让学生更深刻地体会到数学的应用价值.
《课标》强调从学生已有的生活经验出发,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程.其实小学数学的教学内容绝大多数可以联系学生的生活实际,老师要找准每节课的内容与学生生活实际的“切合点”,调动学生学习数学的兴趣和参与学习的积极性.在教学中老师的责任不仅是诱发学生解决现实问题的欲望,更应让学生学会从众多条件、众多信息中选出需要的条件、信息,来解决现实生活中的问题,体验应用数学解决实际问题的成功与快乐.
一、 解决生活中的问题 ,做到学以致用
新课程标准指出,要让学生“认识到现实生活中蕴涵着大量的数学信息.数学在现实世界中有着广泛的应用,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略……”.我们经常会遇到这种情况,一道题目讲了很久学生还弄不懂.如果老师将这道问题与生活实际联系起来,学生马上就能解决.因此作为教师应该思考,如何充分利用学生已有的生活经验,引导学生把数学知识运用到现实中去,以体会数学在生活中的应用价值.
案例1:
在学校组织的春游活动时,我布置作业就编了这样一道题,让学生去完成:“学校组织同学们去春游,每人预收50元,结果乘车费每人16元,门票费每人28元,盒饭每盒5元,预收的钱够了吗?”学生解决自己亲身经历的事,其兴趣是不言而喻的.
案例2:
我校的学生绝大多数是进城务工的子女,而且大多数的家庭是在学校附近做生意的.开学初,我与一家长闲聊中了解到,今年政府给他们减负了,免交工商管理费、卫生费等费用近5000元.这几天我们正好在学习加法结合律,于是我又编了这样一道题:今年党的惠民政策好,给小红家免了工商管理费2284元,免了卫生费1200元,免了个人所得税费1116元,学校也免了借读费200元,请你算一算,小红家今年共免了多少元?学生能很快地利用定律进行简便计算.
二、 创设生活情景,激发学习兴趣
应用题源于生活,每道应用题总可以在生活中找到它的蓝本.因此,我们在应用题教学中如果把应用题与生活实际结合起来,就可以激发学生的学习兴趣.
案例3:
在教学“折扣”时,我作了如下设计:“老师昨天逛街,发现有两家超市卖完全相同的商品,却标着不同的打折方法,西太华超市标着九折优惠,而华润万家标着八折大酬宾,你们说老师应该上哪家超市去买这种商品?”同学们顿时活跃起来,各抒己见,有的说到打八折的超市去买,因为它打的是八折,比九折低;有的说去打九折的商店去买,因为它本来的价钱可能低一些;还有的说,先看看两家超市的原来的标价后再下定论.这时候,我马上问学生,原来的标价就是百分数应用题中的什么量?有的学生马上回答,原来的标价就是百分数应用题中的单位“1”的量,我作了肯定的答复,这样使学生无形中意识到单位“1”的量的训练,学生在学习有关“折扣”的应用题就不会感到乏味了,他们就会满有兴趣进入角色中.
案例4:
在学习了“折扣”后,我向学生出示了这样一题:“某校五年级共有学生79人,在参加植树劳动时,派一位同学去商店购买果汁,商店规定:单盒买每盒2元,买40盒装的一箱九折优惠,买50盒装一箱八八折优惠.问怎样购买才能让每个同学都能喝到一盒果汁,并且又最省钱?”这题的答案不唯一,因此,我要求学生进行思考并进行讨论,学生经过讨论,得出了有以下几种购买方法:
(1)买单盒79盒:2×79=158(元)
(2)买40盒装一箱,再买单盒39盒:2×40×0.9+2×39=150(元)
(3)买50盒装一箱,再买单盒29盒:2×50×0.88+2×29=146(元)
(4)买40盒装两箱:2×40×0.9×2=144(元)
比较决策,买40盒装的两箱,既让每个同学喝一盒果汁还剩余1盒,又最省钱.这样既让学生掌握了知识,又让学生体会到了在生活中如何做到精打细算.
三、 还原生活本质,培养学生思维
在注重数学生活化的同时,我们每一个教师一定要充分认识到数学教学的本质是发展学生的思维.生活化并不意味着数学知识的简单化,相反,还原数学以生活本质更有利于学生思维的发展.
我曾看到过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针重合几次?”那些学生都从手腕上摘下手表,开始拨表针;而这位教授给中国学生讲同一个问题时,学生们就会套用数学公式来进行计算.评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子里的,不能灵活应用,很少想到在实际生活中学习、应用、掌握数学知识.
案例5:
在进行“百分数应用题”教学时,我向学生出示了这样一组数据:“一次数学测验,我班的得分情况如下:100分的3人,90--99分的15人,80--89分的15人,70--79分的10人,60--69分的5人,60分以下的2人.根据以上数据,你能提出哪些百分数的问题并列出相关的算式?”同学们经过认真讨论后,纷纷回答:
(1)满分的人数是优秀人数的百分之几?
(2)优秀的人数是总人数的百分之几?
(3)及格率是多少?
(4)满分的人比90--99分的人少百分之几?
(5)90--99分的人从满分的人多百分之几?……
这样,既提高了学生学习的兴趣,又提高了学生的思维能力,真可谓是一举多得.
案例6:
在进行六年级数学复习时,我出示了这样一题:“5.17”是电信日,兰州移动公司推出几项优惠方式,让大家选用.
(1)推出包月的“88--588元套餐”(打出和接听在250分钟内,按88元计费;打出和接听在250--600分钟,按188元计费;……),且话费给予优惠20%.
(2)月租费30元,打出每分钟0.20元,接听每分钟0.06元.
(3)免收月租费,打出和接听每分钟都是0.30元.
如果李叔叔的手机每月接听和打出电话各在100分钟左右,请你为李叔叔选择一项最省钱的优惠方式.请你展示出必要的计算.
由于学生是第一次看到有关手机计费的习题,感到十分好奇,因此,均能进行认真的思考,经过合作讨论,最后求出了正确的答案.这样,既让学生掌握了如何较为合理地使用手机,同时,也收到了很好的复习效果.
四、 实现生活需要,促进主体发展
  从教育心理学来看,在生活中有五种不同层次的需要,最高需要便是自我实现的需要,一种决策的需要.我们在教学中一旦把应用题教学与生活联系起来,学生这种潜在的需要就更加强烈.
案例7:
在学生掌握了长方体和正方体的表面积的计算方法后,我出示了这样一题:“有一种牛奶盒长5厘米、宽3厘米、高8厘米,厂方准备一箱装24盒,如果你是厂方的设计人员,请你结合厂家利益考虑外包装的长、宽、高各应该是多少?”学生都很兴奋,先是讨论,然后计算.通过各种意见的对比,几种方案的计算,使学生了解使用材料少,就节省成本,厂家利润就增加;同时携带要方便,外观要美.从而进一步使学生熟练了长方体和正方体的表面积计算,并使学生更体会到数学在生活中的作用,激发了学生学习数学的情感.
案例8:
在教学了“百分数应用题”后,我向学生出示了这样一题:“为了节约用水,某市自来水公司规定:凡用户每月用水量不超过20吨的,每吨水收费1.8元,超过20吨的,超过部分增收50%.小明家十月份交纳水费46.8元,问小明家十月份用水多少吨?”学生见了这题目,纷纷陷入了沉思,在我的点拨下,学生很快求出了这题的正确答案:因为每月用水量不超过20吨,每吨收水费1.8元,这样小明家只要交纳水费:1.8×20=36(元);而小明家十月份实际交纳水费46.8元,多交纳了:46.8-36=10.8(元),因为用水量超过20吨的,每吨要增收50%,即每吨要交纳:1.8×(1+50%)=2.7(元),10.8÷2.7=4(吨),因此可得,小明家十月份用水为:20+4=24(吨).
通过这题的练习,既使学生懂得了要节约用水,又使学生懂得解应用题的时候,要认真进行分析推理.
总之,在小学数学教学中,我们要使学生体验数学与日常生活的密切联系,培养学生从周围情境中发现数学问题,运用所学知识解决实际问题的能力,从而培养学生的数学意识,并不断努力提高综合应用知识去解决实际问题的能力.

推荐访问:生活中的数学论文 生活中的数学应用举例

上一篇:小学,数学(共10篇)
下一篇:建军节手抄报图片大全(共6篇)