来源:数学 2019-01-24
20道初一几何解答题
1.已知:BC两点把线段AD分成2:3:4三部分,M是AD的中点,CD=12.
求:(1).MC的长.(2).AB:BM
2.在△ABC中,其内角分别为∠1、∠2、∠3,若∠1:∠2:∠3=1:2:4,且
初一几何题50道,
1.在三角形ABC中,角ABC为60度,AD、CE分别平分 角BAC 角ACB,试猜想,AC、AE、CD有怎么样的数量关系
2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍
求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线.(这条线叫欧拉线) 求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆.(这个圆叫九点圆)
3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加1
4.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α.请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母).
5.设所求直线为y=kx+b (k,b为常数.k不等于0).则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1 (1) 过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2 (2).直线(2)与 直线(1)的交点为A,直线(2)与 直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.
6.在三角形ABC中,角ABC=60,点P是三角ABC内的一点,使得角APB=角BPC=角CPA,且PA=8 PC =6则PB= 2 P是矩形ABCD内一点,PA=3 PB= 4 PC=5 则PD= 3 三角形ABC是等腰直角三角形,角C=90 O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1 两三角形的公共部分为多边形KLMNPQ,1)证明:三角形AKL 三角形BMN 三角形CPQ 都是等腰直角三角形 2)求三角形ABC与三角形A1B1C1公共部分的面积.
已知三角形ABC,a,b,c分别为三边.求证:三角形三边的平方和大于等于16倍的根号3 (即:a2+b2+c2大于等于16倍的根号3)
初一几何单元练习题
一.选择题
1.如果α和β是同旁内角,且α=55°,则β等于( )
(A)55° (B)125° (C)55°或125° (D)无法确定
2.如图19-2-(2)
AB‖CD若∠2是∠1的2倍,则∠2等于( )
(A) 60°(B)90°(C)120° (D)150
3.如图19-2-(3)
∠1+∠2=180°,∠3=110°,则∠4度数( )
(A)等于∠1 (B)110°
(C)70° (D)不能确定
4.如图19-2-(3)
∠1+∠2=180°,∠3=110°,则∠1的度数是( )
(A)70° (B)110°
(C)180°-∠2 (D)以上都不对
5.如图19-2(5),
已知∠1=∠2,若要使∠3=∠4,则需( )
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)AB‖CD
6.如图19-2-(6),
AB‖CD,∠1=∠B,∠2=∠D,则∠BED为( )
(A)锐角 (B)直角
(C)钝角 (D)无法确定
7.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()
(A)相等 (B)互补 (C)相等且互补 (D)相等或互补
8.如图19-2-(8)AB‖CD,∠α=()
(A)50° (B)80° (C)85°
答案:1.D 2.C 3.C 4.C 5.D 6.B 7.D 8.B
初一几何第二学期期末试题
1.两个角的和与这两角的差互补,则这两个角( )
A.一个是锐角,一个是钝角 B.都是钝角
C.都是直角 D.必有一个直角
2.如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是( )
3.下列说法正确的是 ( )
A.一条直线的垂线有且只有一条
B.过射线端点与射线垂直的直线只有一条
C.如果两个角互为补角,那么这两个角一定是邻补角
D.过直线外和直线上的两个已知点,做已知直线的垂线
4.在同一平面内,两条不重合直线的位置关系可能有( )
A.平行或相交 B.垂直或平行
C.垂直或相交 D.平行、垂直或相交
5.不相邻的两个直角,如果它们有一条公共边,那么另一边互相( )
A.平行 B.垂直
C.在同一条直线上 D.或平行、或垂直、或在同一条直线上
答案:1.D 2.C 3.B 4.A 5.A
数学初一几何答案如何书写
我举个例子.比如说角AOC等于90°,角BOC与角COD互补,角COD等于115°.角DOB是一个平角.求角AOB的度数.
因为角BOC与角COD互补,角COD等于115°
所以角BOC等于180°-角COD
就是这样,我就不写完了,只要把你思考的过程写下来就OK了,但必须得写解和因为什么,所以什么.因为和所以可以用符号代替
初一上册几何图形的详细定义
面和曲面两种,面与面相交的地方形成线,线与线相交的地方叫做点.
用运动的观点来理解点,线,面,体.点动成线,线动成面,面动成体.
平面几何图形
1.圆形:包括正圆,椭圆,多焦点圆——卵圆.[1]
2.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,梯形【分为直角梯形和等腰梯形】,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……
注:正方形既是矩形也是特殊的菱形.
3.弓形(由直线和圆弧构成的图形,包括优弧弓,劣弧弓,抛物线弓等).
4.多弧形(包括月牙形,谷粒形,太极形葫芦形等)
————来自百度百科
初一数学所有几何公式有哪些?急阿!
只要初一上学期的.不要其它的!
几何公式和定理(初中)
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆.
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h
正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"
圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
求关于初一数学几何图形的知识点?
一、知识点回顾
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形.
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形.
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形.
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
3、生活中的立体图形
圆柱(圆柱的侧面是曲面,底面是圆)
柱
生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
(棱柱的侧面是若干个小长方形构成,底面是多边形)
(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)
棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱.
侧棱:相邻两个侧面的交线叫做侧棱.
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点.
5、正方体的平面展开图:11种
截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.
可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、
五边形、六边形、正六边形
不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
8 三视图
物体的三视图指主视图、俯视图、左视图.
主视图:从正面看到的图,叫做主视图.
左视图:从左面看到的图,叫做左视图.
俯视图:从上面看到的图,叫做俯视图.
注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一.
9 多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形.
1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形.
2.若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2
弧:圆上A、B两点之间的部分叫做弧.
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.
初一上学期几何题
要有图《要简单》
1. 在ΔABC中 ,AB=AC,点 D.E分别在AC.AB上,且BC=BD=DE=EA,求∠A的度数.
2. 在ΔABC中,∠C=90 ,DE是AB的垂直平分线交BC于D,垂足为E,∠BAD:∠CAB=1:3,求∠B的度数.
3. BD平分∠ABC,DE⊥AB,DF⊥BC,E.F为垂足,连结EF.(1)图中有等腰三角形吗?如有,写出来,并说理.(2)BD与EF垂直吗?为什么?
4. 已知等腰三角形一边长为5,另一边为6,则它的周长为
5 . 在△ABC中,AB=AC,∠A=3∠B,则∠A= ∠C=
6 . 如图(1),△ABC中∠C=90?,∠B=30?,CD为AB边上的高,E是AB上一点,且CE=BE.
(1) 写出图中所有的等腰三角形
(2) 写出图中所有的等边三角形
(3) 若DE=2cm,则AB= cm,AC= cm.
7. 已知等腰△ABC的周长为24cm,且底边减去一腰长的差为3cm,
则这个三角形的底边为
8.若等腰三角形的一个外角为100?,则它的三个内角为
9.一个等腰三角形的一边长为6,一外角为120?,则它的周长为
10.如图(2),已知AB=AC,AD=BD=BC,则△ABC的三个内角为
11.等腰三角形的顶角为70?,则一腰上的高与底边的夹角为
12.等腰三角形一腰上的高与另一腰的夹角为35?,则这个等腰三角形的底角为
13.等腰三角形的周长为,一腰上的中线把周长分成5:3,则三角形的底边长为. 等腰三角形两个角的比为4:1,顶角为
∠p=25?,且PA=AB=BC=CD,则∠CDE的度数为 ,∠DCF的度数为
14. 如图(2),△ABC中,AB=AC,AD⊥BC于D,△ABC的周长为50 cm,而AB+BD=AD=40 cm,则AD=
15. 如图(3)△ABC中,AB=AC,且EB=BD=DC=CF,∠A=40?,则∠EDF=
16 . 如图(4)△ABC中,AB=AC,AD=BD,AC=CD,则∠B=
17 .. 等腰三角形一腰上的中线把周长分为15和12两部分,则它的底边长是
18. 等腰三角形的周长为26 cm,以一腰为边作等边三角形,其周长为30 cm,则等腰三角形的底边长为
初一上册数学几何应用题(30道)
一定要应用题
.某商店经销一种商品,由于进货价降低了6.4%,利润率提高了80%,则原来经销此种商品的利润率是
__
A16% B17% C18% D19%
2.已知等腰三角形的两边长为2,7,则它的周长为_
3.学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大----
A 8岁 B9岁 C10岁 D 11岁
4.已知自然数N被3除余2.即N=3n+2(n是自然数),把N分成n个自然数的和,这些自然数的乘积最大值莀___
5.有a、b、c三个自然数,它们的乘积是2002,则a+b+c的最大值是
6.2. 有一天,数学城里的小蚂蚁皮皮突发起想,要在餐桌上完成一次特殊的散步.他设想的特殊散步必须同时符合以下3个条件:
1.从某一点A出发,沿直线前进10厘米或20厘米后,立即向左转?缓笤傺刂毕咔敖?0厘米或20厘米后,立即向左转,如此继续前进,最终回到出发点A;
2 .每次向左转的角度都是相同的;
3 .散步路线的总长度是1米.
请画出小蚂蚁皮皮可以选择的3种不同的散步路线图,并标明长度和角度
7.江城市第九社区公安派出所共有男警察9人,女警察6人.4月20日起,该派出所每天安排男女警察各1人负责夜间治安巡防.在夜间巡防值勤表上,所有男女警察都被分别编上固定序号,按照序号从小到大一轮一轮地循环下去.如4月20日,“男1号”与“女1号”搭挡,接下来依次是“男2号”与“女2号”、“男3号”与“女3号”、.、“男7号”与“女1号”、“男8号”与“女2号”分别搭挡.
1 5月26日轮到哪两位警察搭挡巡防?
2 照值勤表上的安排,“男1号”与“女5号”是否会在同一天巡防?为什么?
3如果从5月8日起,派出所新调来一名女警察(“女7号”)接在“女6号”之后参加夜间巡防,那么“男1号”与“女5号”是否能在同一天巡防?如果能,最早将在几月几日同时巡防?
8.已知:在△ABC中,∠B=60°,∠BAC=70°,AD⊥BC于D.∠CAD=
9.如果a b ,则下列各式不成立的是( )
A、a + 4 b + 4 ,B、2 + 3a 2 + 3b
C、a - 6 b - 6 ,D、4 - 3a 4 - 3b
10.如果P(m+3 ,m-5)在X轴上,那么点P的坐标是( )
A、(-3,0) B、(0,-3) C、(8,0) D、(5,0)
11.直线外一点到这条直线的距离是这点到这条直线的( )
A 、垂线段 B、 垂线 C、垂线段的长度 D、垂线的长度
12.以下各组线段为边不能组成三角形的是( )
A、4,3,3 B、1,5,6 C、2,5,4 D、5,8,4
13.作出函数y=-2x+3的图象,根据图象,求:
1 方程-2x+3=0的解;
2 不等式-2x+3>0,-2x+3<0的解集;
3 不等式组-3≤-2x+3≤4的解集.
14.y+3与x成正比例,且图象经过点-3,6,
求1y与x的函数关系式,
2求当x=4时y的值
15.长方形的周长是12,设它的长为y,宽为x,试求y与x之间的函数关系式,写出自变量取值范围,并画出图象
16.某人装修房屋,原预算25000元.装修时因材料费下降了20%,工资涨了10%,实际用去21500元.求原来材料费及工资各是多少元?
17.直线AB与CD相交于O,∠AOC=60°,OE平分∠BOD,OF⊥AB于点O.试求∠EOF
18.在同一坐标系内画出直线y=3x + 5和y=-2x的图象,利用图象:
1 求它们交点的坐标,
2 求不等式3x + 5 -2x 的解集.
19.甲、乙两地间的路程为20千米,A、B两人分别从甲、乙两地同时同向而行,2小时相遇,相遇后A立即返回甲地,B仍向甲地前进,当A回到甲地时,B离甲地还有2千米.A、B两人的速度分别是多少?
20.一个车间有工人70人,每人平均每天加工轴杆15根或轴承12个,问应怎样分配工人,才能使所生产的轴杆和轴承刚好配套?一个轴杆,[两个轴承才可配成一套 ]
21.用浓度为8%和5%的两种盐水,配制600克浓度为7%的盐水,两种盐水各需多少克?
22.某年级有一批学生去阶梯教室听讲座,若每排坐14人,则还有12 人没有坐位;若每排坐16人,则还可增加8人听课,问这批学生共有多少人?教室里有多少排坐位?
23.在等式y=ax2+bx+c中,当x=2时,y=3;当x=1和x=3时,y的值相等;当x=0时,y的值比x=-1时y的值大5,求a、b、c的值.
24.一辆汽车在东西方向的公路上行驶.从A出发,向东方向行驶为正.一天中,汽车的行驶记录为:+20千米、-15千米、+30千米、-10千米、-10千米.问:
(1) 汽车停止行驶时是否回到A地?距离A地多少千米?在A地东面还是西面?
(2) 这一天,汽车共行驶了多少路程?
25.数字12800用科学记数法可表示为 ;其中“2”的数位读成 .
26.绝对值小于2005的所有整数的积为
27.已知A,B两地相距10千米,甲从A地去B地,乙从B地去A地,某一个时刻,他俩相距2千米,如果两人的前进速度一样,那么这时甲距离B有( )
A 4千米 B 6千米 C 7千米 D 4千米或6千米
28.用2、3、4三个数字可以写成各个数位不重复的三位数的偶数,然后把这些数相加,所得的和是( )
A 1332 B 576 C 666 D 1998
29.关于相反数有以下的一些说法:
①符号相反的两个有理数互为相反数 ②在原点两边的两个点表示的数互为相反数
③绝对值相等的两个不同的数互为相反数④到原点距离相等的两个点表示的两个有理数互为相反数.其中正确的说法有 ( )
A 1个 B 2个 C 3个 D 4个
30.先化简,再求值
(a-b)(a+b)3-2ab(a2-b2),其中a=-1/2 ,b =-1.【初一几何】
初一几何带图练习题?【初一几何】
初一几何单元练习题
1.如果α和β是同旁内角,且α=55°,则β等于( )
(A)55° (B)125° (C)55°或125° (D)无法确定
2.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()
(A)相等 (B)互补 (C)相等且互补 (D)相等或互补
3.两个角的和与这两角的差互补,则这两个角( )
A.一个是锐角,一个是钝角 B.都是钝角 C.都是直角 D.必有一个直角
4.下列说法正确的是 ( )
A.一条直线的垂线有且只有一条
B.过射线端点与射线垂直的直线只有一条
C.如果两个角互为补角,那么这两个角一定是邻补角
D.过直线外和直线上的两个已知点,做已知直线的垂线
5.在同一平面内,两条不重合直线的位置关系可能有( )
A.平行或相交 B.垂直或平行 C.垂直或相交 D.平行、垂直或相交
6.不相邻的两个直角,如果它们有一条公共边,那么另一边互相( )
A.平行 B.垂直 C.在同一条直线上 D.或平行、或垂直、或在同一条直线上
答案:1.D 2.D 3.D 4.B 5.A 6.A
其实选择题也可改为应用题的哦,总之,我提供的这些希望对你有所帮助.
这个也不错
一些初一几何题
1.已知三角形ABC的角ABC的平分线与角BAC的外角CAD的平分线相交于E,若角C=84度 则角E=( )
2.请到网易相册看图 百度知道相册 如图,三角形ABC的三条角平分线AD\BE\CF交与点G,GH垂直BC与H,求证:角BGD=角CGH
相册地址:
.已知三角形ABC的角ABC的平分线与角BAC的外角CAD的平分线相交于E,若角C=84度 则角E=(42 )
∵∠DAC=∠ABC+∠C
又∠DAE=1/2∠DAC
∴∠DAE=1/2(∠ABC+∠C)=1/2∠ABC+1/2∠C
∵∠ABE=1/2∠ABC
∴∠DAE=∠ABE+1/2∠C
又:∠DAE=∠ABE+∠E
∴∠E=1/2∠C=1/2*84=42
2.请到网易相册看图 百度知道相册 如图,三角形ABC的三条角平分线AD\BE\CF交与点G,GH垂直BC与H,求证:角BGD=角CGH
证明:
∵∠BGD=∠DAB+∠ABE=1/2(∠BAC+∠ABC)
∠BAC+∠ABC=180-∠ACB
∴∠BGD=1/2(180-∠ACB)=90-1/2∠ACB
又GH⊥BC
∴∠CGH=90-∠GCH=90-1/2∠ACB
∴∠BGD=∠CGH
读你作文篇一:读你_600字世间的每一个人都是一本书,有的人几页薄纸... 2019-05-10
第一篇我又想起了那句话作文:我又想起了那句话_600字“遇到困难,摔... 2019-05-10
苏步青的故事篇(1):《百位名人勤奋学习的故事》读后感_750字读完《... 2019-05-07
作文写人篇(1):写人的作文_800字刚开学,一个突如其来的消息传遍了... 2019-05-07
(1) [崔事班的故事]故事发生在我们班上_600字在一个晴朗的早晨,我... 2019-05-03
篇一:[写关于老师的作文]关于赞美老师的作文:我的老师_900字“老师... 2019-05-03
的作文一:写人的作文_800字刚开学,一个突如其来的消息传遍了我们班... 2019-04-23
篇一:[快乐来自于坚持600字]快乐,来自于坚持_550字幼鸟张开翅膀在... 2019-04-14
赞美老师的作文篇一:关于赞美老师的作文:我的老师_900字“老师”是... 2019-04-13
篇一:[外国名人故事]名人故事:外国数学名人故事诺伊曼(1903-1957... 2019-04-13
上一篇:我吸老师奶奶作文(共10篇)
下一篇:手抄报图片大全5年级(共10篇)