来源:数学 2018-07-14
数学问题:已知直线l1为曲线y=x^2+x-2在点(1,0)入的切线
1,已知直线l1为曲线y=x^2+x-2在点(1,0)入的切线,l2为该曲线的另一条切线,且l1⊥l2
(1)求直线l2的方程
答案:-1x/3-(22/9)
(2)求直线l1,l2和x轴所围成的三角形的面积
答案:125/12
2,设b≥0,且抛物线C1:y=x^2+bx-a^2和抛物线C2:y=-x^2+ax+(b√2/4)在它们的一个交点处的切线互相垂直
(1)求点P(a,b)的抛物线方程f(a,b)=0
答案:f(a,b)=2a^2+(b√2/2)-ab-1
(2)若点Q(m,n)在由曲线x=0,y=0和f(x,y)=0围成的封闭区域内(包括边界)运动,求3m+n的取值范围
答案:[0,7√2/2]
3,半径为5的半球内接一个底面长为宽的2倍的长方体(底面与半球的底面重合),求长方体的体积的最大值
答案:400√3/27
4,过曲线y=1-x^2(x>0)上的点P作该曲线的切线,与x轴,y轴分别交于点M,N,试确定P的坐标,使得△MON的面积最小
答案:(√3/3,2/3)
最好解析一下
1,已知直线l1为曲线y=x^2+x-2在点(1,0)入的切线,l2为该曲线的另一条切线,且l1⊥l2(1)求直线l2的方程答案:-1x/3-(22/9)y"=2x+1点(1,0)处的切线斜率=3,而:l1⊥l2,所以l2得斜率=-1/32x+1=-1/3x=-2/3对应的y=(-2/3)^2+(...
数学问题,有过程追加
1.A,B,C,D四个孩子在院子里踢球,把房间的窗玻璃打破了,询问后得到的答复是:A说:“是B打破的.” B说:“是D打破的.”C说:“不是我打破的.” D说:“B撒谎!” 已知其中只有一个小孩说了真话,而且肇事者也是其中的一个人,谁是肇事者?
2.假如你是运输公司的经理,现在有10吨货物,可以用大小两种卡车运输,大卡车能装2吨,小卡车只能装1吨,若要一次运完,则派车运货的方式有几种?
3.用一根长41.12分米的铁丝围成一个半圆形,这个半圆形的面积是几平方分米?(π取3.14)
4.把0.314,0.134,3.14,31.4,0.3014,0.0314,π这7个数从小到大,从左到右排列
1、C
假设C说了真话.那么B说的是假话,则D说的是真话,有两个人说真话了.所以C说的是假话,所以是C打破的.
2、5种
10=2*5
=2*4+1*2
=2*3+1*4
=2*2+1*6
=2*1+1*8
=2*10
3、设圆半径是R
3.14R+2R=41.14
R=8
S=100.48平方分米
4、0.0314
问题解决与数学思考
(一)设置恰当问题情境,为培养学生的数学思考和问题解决能力提供环境
问题是思维的源泉,没有问题就没有思维的动力.所以要从学生已有的生活经验和数学知识的实际出发设计问题情境,使学生能基于情境进行思考,发现要解决的数学问题.
(二)设计有效的数学活动,培养学生数学思考和解决问题能力
首先,有效的数学活动应当是“数学”的.学生所从事的活动要有明确的数学目标,动手实践、小组合作、同伴交流等都是活动的形式.因此,通过活动促进学生对数学对象的理解(包括内涵、与其他内容的联系、在实际中应用),是最重要的.一般而言,数学建模,数学探究都是一些有效的数学活动方式.一道数学问题的分析和解决过程也可以看成是一个“有效的数学活动过程”.让学生从事“做数学”的活动,也是让学生经历从具体到抽象的过程:而提出问题实际上就是引导学生进行初步的“数学化”——从数学的角度思考现实中的现象(问题);抽象归纳则是真正的“数学化”过程——形成对数学的理解;应用举例是让学生通过学习建模的活动,发展用数学解决问题的能力.并体验到“生活中处处有数学”.
打字不易,【数学问题】
什么数学问题
数学问题就是在数学领域出现的运用相关数学知识去解决的问题.
比如歌德巴赫猜想,还有以下例子:
在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的着名讲演.他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题.这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决.他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞.
希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析.
[01]康托的连续统基数问题.
1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即着名的连续统假设.1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性.1963年,美国数学家科恩(P•Choen)证明连续统假设与ZF公理彼此独立.因而,连续统假设不能用ZF公理加以证明.在这个意义下,问题已获解决.
[02]算术公理系统的无矛盾性.
欧氏几何的无矛盾性可以归结为算术公理的无矛盾性.希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定.根茨(G•Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的无矛盾性.
[03]只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的.
问题的意思是:存在两个登高等底的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等德恩(M•Dehn)1900年已解决.
[04]两点间以直线为距离最短线问题.
此问题提的一般.满足此性质的几何很多,因而需要加以某些限制条件.1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获解决.
[05]拓扑学成为李群的条件(拓扑群).
这一个问题简称连续群的解析性,即是否每一个局部欧氏群都一定是李群.1952年,由格里森(Gleason)、蒙哥马利(Montgomery)、齐宾(Zippin)共同解决.1953年,日本的山迈英彦已得到完全肯定的结果.
[06]对数学起重要作用的物理学的公理化.
1933年,苏联数学家柯尔莫哥洛夫将概率论公理化.后来,在量子力学、量子场论方面取得成功.但对物理学各个分支能否全盘公理化,很多人有怀疑.
[07]某些数的超越性的证明.
需证:如果 是代数数, 是无理数的代数数,那么 一定是超越数或至少是无理数(例如, 和 ).苏联的盖尔芳德(Gelfond)1929年、德国的施奈德(Schneider)及西格尔(Siegel)1935年分别独立地证明了其正确性.但超越数理论还远未完成.目前,确定所给的数是否超越数,尚无统一的方法.
[08]素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题.
素数是一个很古老的研究领域.希尔伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孪生素数问题.黎曼猜想至今未解决.哥德巴赫猜想和孪生素数问题目前也未最终解决,其最佳结果均属中国数学家陈景润.
[09]一般互反律在任意数域中的证明.
1921年由日本的高木贞治,1927年由德国的阿廷(E•Artin)各自给以基本解决.而类域理论至今还在发展之中.
[10]能否通过有限步骤来判定不定方程是否存在有理整数解?
求出一个整数系数方程的整数根,称为丢番图(约210-290,古希腊数学家)方程可解.1950年前后,美国数学家戴维斯(Davis)、普特南(Putnan)、罗宾逊(Robinson)等取得关键性突破.1970年,巴克尔(Baker)、费罗斯(Philos)对含两个未知数的方程取得肯定结论.1970年.苏联数学家马蒂塞维奇最终证明:在一般情况答案是否定的.尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系.
[11]一般代数数域内的二次型论.
德国数学家哈塞(Hasse)和西格尔(Siegel)在20年代获重要结果.60年代,法国数学家魏依(A•Weil)取得了新进展.
[12]类域的构成问题.
即将阿贝尔域上的克罗内克定理推广到任意的代数有理域上去.此问题仅有一些零星结果,离彻底解决还很远.
[13]一般七次代数方程以二变量连续函数之组合求解的不可能性.
七次方程 的根依赖于方程中的3个参数 、 、 ; .这一函数能否用两变量函数表示出来?此问题已接近解决.1957年,苏联数学家阿诺尔德(Arnold)证明了任一在 上连续的实函数 可写成形式 ,这里 和 为连续实函数.柯尔莫哥洛夫证明 可写成形式 ,这里 和 为连续实函数, 的选取可与 完全无关.1964年,维土斯金(Vituskin)推广到连续可微情形,对解析函数情形则未解决.
[14]某些完备函数系的有限的证明.
即域 上的以 为自变量的多项式 , 为 上的有理函数 构成的环,并且 试问 是否可由有限个元素 的多项式生成?这个与代数不变量问题有关的问题,日本数学家永田雅宜于1959年用漂亮的反例给出了否定的解决.
[15]建立代数几何学的基础.
荷兰数学家范德瓦尔登1938年至1940年,魏依1950年已解决.
注:舒伯特(Schubert)计数演算的严格基础.
一个典型的问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观的解法.希尔伯特要求将问题一般化,并给以严格基础.现在已有了一些可计算的方法,它和代数几何学有密切的关系.但严格的基础至今仍未建立.
[16]代数曲线和曲面的拓扑研究.
此问题前半部涉及代数曲线含有闭的分枝曲线的最大数目.后半部要求讨论备 的极限环的最多个数 和相对位置,其中 、 是 、 的 次多项式.对 (即二次系统)的情况,1934年福罗献尔得到 ;1952年鲍廷得到 ;1955年苏联的波德洛夫斯基宣布 ,这个曾震动一时的结果,由于其中的若干引理被否定而成疑问.关于相对位置,中国数学家董金柱、叶彦谦1957年证明了 不超过两串.1957年,中国数学家秦元勋和蒲富金具体给出了 的方程具有至少3个成串极限环的实例.1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出至少有4个极限环的具体例子.1983年,秦元勋进一步证明了二次系统最多有4个极限环,并且是 结构,从而最终地解决了二次微分方程的解的结构问题,并为研究希尔伯特第[16]问题提供了新的途径.
[17]半正定形式的平方和表示.
实系数有理函数 对任意数组 都恒大于或等于0,确定 是否都能写成有理函数的平方和?1927年阿廷已肯定地解决.
[18]用全等多面体构造空间.
德国数学家比贝尔巴赫(Bieberbach)1910年,莱因哈特(Reinhart)1928年作出部分解决.
[19]正则变分问题的解是否总是解析函数?
德国数学家伯恩斯坦(Bernrtein,1929)和苏联数学家彼德罗夫斯基(1939)已解决.
[20]研究一般边值问题.
此问题进展迅速,己成为一个很大的数学分支.日前还在继读发展.
[21]具给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明.
此问题属线性常微分方程的大范围理论.希尔伯特本人于1905年、勒尔(H•Rohrl)于1957年分别得出重要结果.1970年法国数学家德利涅(Deligne)作出了出色贡献.
[22]用自守函数将解析函数单值化.
此问题涉及艰深的黎曼曲面理论,1907年克伯(P•Koebe)对一个变量情形已解决而使问题的研究获重要突破.其它方面尚未解决.
[23]发展变分学方法的研究.
这不是一个明确的数学问题.20世纪变分法有了很大发展.
有数学问题啊
2²+4²+...+50²
=(1+1)²+(2+2)²+...+(25+25)²
=2*1²+2+2*2²+4+...+2*25²+50
=2(1²+2²+3²+...+25²)+2+4+6+...+50
=2*5525+(2+50)*25/2
=11050+650
=11700
数学问题:-(-1)=? +(-1)=?
还有+(-3)=? -(+6)=?
-(-1)=1
+(-1)=-1
+(-3)=-3
负负、正正得正,正负、负正为负.【数学问题】
1.[数学问题]有关质数和合数的数学问题(3)
正方体的每个面都写着一个自然数,并且相对两个面所写两个数之和相等.10,12,15是相邻三面上的数,若它们的对面分别写的是质数a/b/c,则a的平方+b的平方+c的平方-ab-bc-ca的值等于_____
请勿抄袭.
我就把a的平方写成A2好了,方面看清楚,现在开始
在所有前面乘个2,则为1/2(A—B)平方+1/2(A-C)平方+1/2(B-C)平方,
你注意看,相对面和相等,所以A-B=2.A-C=5,B-C=3,所以答案为=2+25/2+9/2=2+17=19,如果答案不对,也有可能算错,但是思考过程绝对是正确的
数学有问题.
好
1、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人.问他赚了多少?
答案:2元
3、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五千克以上,问他该如何称量.
答案:先称3只,再拿下一只,称量后算差.
4、有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背回家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
答案:25根
先背50根到25米处,这时,吃了25根,还有25根,放下.回头再背剩下的50根,走到25米处时,又吃了25根,还有25根.再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家.
数学问题在实际生活中的运用
数学问题在实际生活中可以解决一些实际问题.
对数螺线与蜘蛛网
曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐.摆下八卦阵,只等飞来将.”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形.我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具.
你观察过蜘蛛网吗?它是用什么工具编织出这么精致的网来的呢?你心中是不是有一连串的疑问,好,下面就让我来慢慢告诉你吧.在结网的过程中,功勋最卓着的要属它的腿了.首先,它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上.然后,再吐出一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住.为继续穿针引线搭好了脚手架.它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到中心时,把丝拉紧,多余的部分就让它聚到中心.从中心往边上爬的过程中,在合适的地方加几根辐线,为了保持蜘蛛网的平衡,再到对面去加几根对称的辐线.一般来说,不同种类的蜘蛛引出的辐线数目不相同.丝蛛最多,42条;有带的蜘蛛次之,也有32条;角蛛最少,也达到21条.同一种蜘蛛一般不会改变辐线数.
到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体 相同的.现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了.蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝.这是一条辅助的丝.然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线.在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上.这样半径上就有许多小球.从外面看上去,就是许多个小点.好了,一个完美的蜘蛛网就结成了.
让我们再来好好观察一下这个小精灵的杰作:从外圈走向中心的那根螺旋线,越接近中心,每周间的距离越密,直到中断.只有中心部分的辅助线一圈密似一圈,向中心绕去.小精灵所画出的曲线,在几何中称之为对数螺线.
对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角.大家可别小看了对数螺线:在工业生产中,把抽水机的涡轮叶片的曲面作成对数;螺线的形状,抽水就均匀;在农业生产中,把轧刀的刀口弯曲成对数螺线的形状,它就会按特定的角度来切割草料,又快又好.
猫捉老鼠
问题:如果3只猫在3分钟内捉住了3只老鼠,那么多少只猫将在100分钟内捉住100只老鼠?
这是一个古老的趣题,常见的答案是这样的:如果3只猫用3分钟捉住了3只老鼠,那么它们必须用1分钟捉住1只老鼠.于是,如果捉1只老鼠要花去它们1分钟时间,那么同样的3只猫在l00分钟内将会捉住100只老鼠.
遗憾的是,问题并不那么简单.刚才的解答实际上利用了某个假定,它无疑是题目中所没有谈到的.这个假定认为这3只猫把注意力全部集中于同一只老鼠身上,它们通过合作在1分钟内把它捉住,然后再联合把注意力转向另—只老鼠.
但是,假设3只猫换一个做法,每只猫各追捕1只老鼠,各花3分钟把它们捉住.按照这种设想,3只猫还是用3分钟捉住3只老鼠.于是,它们要花6分钟去捉住6只老鼠,花9分钟捉住9只老鼠,花99分钟捉住99只老鼠.现在我们面临着一个计算上的困难,同样的3只猫究竟要花多长时间才能捉住第100只老鼠呢?如果它们还是要足足花上3分钟去捉住这只老鼠,那么这3只猫得花l02分钟捉住102只老鼠.要在100分钟内捉住100只老鼠——这是题目关于猫捉老鼠的效率指标,我们肯定需要多于3只而少于4只的猫,因此答案只能是需要4只猫,虽然这有点浪费.
显然,对于3只猫是怎样准确地计算猫捉老鼠这种行动的时间,这个趣题没做任何交代.因此,如果允许答案不唯一,那么,答案可以是丰富多彩的,3只、4只、甚至更多.如果要求答案唯一的话,这个问题的唯一正确答案是:这是一个意义不明确的问题,由于没有更多关于猫是怎样捕捉老鼠的信息,因此无法回答这个问题.
这个简单的趣题启示我们,在解答一个数学问题(也包括其他问题)前,一定要仔细领会题目所给出的全部信息,既不要曲解题义,也不要人为添加条件以迎合所谓的标准答案.当然这个趣题也给了我们一个有益的人生启示——只有合作才能产生最佳的工作效益.
表面涂漆的小积木的块数
一块表面涂着红漆的大积木(正方体),被锯成27块大小一样的小积木,那么,这些小积木中,(1)三面涂漆的有几块?(2)两面涂漆的有几块?(3)一面涂漆的有几块?
这时,就不能再用把积木锯开的办法来回答问题了.但只需认真观察一下,你就能发现,把正方体锯开以后,只有位于正方体八个角上的那些小积木,是三面涂漆的.也就是说,三面涂漆的小积木的块数,等于正方体的顶点数,有8块;
涂漆的那些小积木,位于正方体的两个面的交界处,但不在正方体的角上(即顶点处).因此,只需首先确定正方体的某条棱上出现的两面涂漆的小积木的块数,而正方体有12条棱.于是,立即可以求得,两面涂漆的小积木的块数为1块×12=12块;
一面涂漆的小积木,位于正方体每个面的中心部位.即不在正方体的顶点处,也不在棱上.因此,只需首先确定正方体的某一个面上出现的一面涂漆的小积木的块数,而正方体有6个面.于是可得,一面涂漆的小积木的块数为1块×6=6块.
通过观察,找出解决问题的规律,是学习数学的重要任务之一.这样,就能运用数学知识迅速而又有效地解决实际问题.根据上面归纳出来的分析方法,即使把这个正方体锯成更多的小积木,我们也能轻松地回答类似的问题.
建议班级购买一台饮水机
在炎炎夏日里,同学们遇到的难事就是饮水问题,为了使同学们过一个卫生清洁的夏季,班级决定出钱买一台饮水机,而每人又应出多少钱呢?即使买了饮水机,是否比过去每个学生每天买矿泉水更节省、更实惠?下面就来解答这个问题.
一、学生矿泉水费用支出
温州市景山中学共有37个班级,假设每班学生平均为60人,那么全校就有60×37=2220(人).一年中,学生在校的时间(除去寒暑假双休日)大约为240天,设春季、夏季、秋季、冬季、各为60天,在班级没有购买饮水机时,学生解渴一般买矿泉水,设矿泉水每瓶为一元,学生春秋季每人二天1瓶矿泉水,则总共为60瓶.夏季每人每天1瓶,则总共也为60瓶,冬季每人每4天1瓶,总共为15瓶,则全年平均每名学生矿泉水费支出: 60+60+(60÷4)×1=135(元);全班学生矿泉水费用 135×60=8100(元);全校学生矿泉水费用:8100×37=299700(元).
二、使用饮水机费用
一台冷热饮水机的价格约为750元,1字牌大桶矿泉水为每桶10元,现每班都配备饮水机.设每班春、季两季、每2天1桶,则需60桶,夏季每天2桶,则需120桶,冬季每6天1桶,则每班需20桶,则一学年每班需要“60+120+20=200(桶),一学生每班水费为200×10=2000元.电费折合为每学年每班为300元.则一学年配置饮水机每班水电费2300元.所以,一学年每班饮水机等合计约为2300+750÷3=2550元;每个学生平均一学年的水电费为2500÷60=42.5元;景山中学全校全年饮水机等费用约为37×2550=94350元;
显然,通过计算,比较两项开支费用,各班购买一台饮水机要经济实惠得多,一学年每个学生可以节省:135-42.5=92.5元;每个班一学年可节省: 92.5×60=5550元;全校一学年可节省:5550×37=205350元.
205350元,一个了不起的数据,而我们每天又可以喝上卫生清洁、冷暖皆宜的饮水机的矿泉水,等我们毕业时还可以把饮水机赠给下届同学,何乐而不为呢?我向昌乐二中提出倡议:在每个教室里配一台饮水机.
巧用数学看现实
在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?
某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖 10000元 1名,一等奖1000元 2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?
面对问题我们并不能一目了然.于是我们首先作了一个随机调查.把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以.调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?
在实际问题中,甲商厚每组设奖销售的营业额和参加抽奖的人数都没有限制.所以我们认为这个问题应该有几种答案.
一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客.
二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共 14000元(10000+ 2000+ 1000+1000=14000).假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为 280000元( 14000 ÷ 5%=280000).
所以由此可得:
(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.
(2)当两商厦的营业额都不足 280000元时,乙商厦的优惠则小于 14000元,所以这时甲商厦提供的优惠仍是 14000元,优惠较大.
(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大.
像这样的问题,我们在日常生活中随处可见.例如,有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售.两站的优惠期限都是一年.你作为用户,应该选哪家好?
这个问题与前面的问题有很大相同之处.只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了.
随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率.运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”.
作为跨世纪的中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地适应社会的发展和需要.
希望能帮到你...
解决数学问题的常见思路方法有哪些?
1、公式法:将公式直接运用到问题中,常用在代数问题中.解决该类问题必须记好数学公式.
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中.解决该类问题必须掌握好几何中的定义、公理、定理和推论等.
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中.
读你作文篇一:读你_600字世间的每一个人都是一本书,有的人几页薄纸... 2019-05-10
第一篇我又想起了那句话作文:我又想起了那句话_600字“遇到困难,摔... 2019-05-10
苏步青的故事篇(1):《百位名人勤奋学习的故事》读后感_750字读完《... 2019-05-07
作文写人篇(1):写人的作文_800字刚开学,一个突如其来的消息传遍了... 2019-05-07
(1) [崔事班的故事]故事发生在我们班上_600字在一个晴朗的早晨,我... 2019-05-03
篇一:[写关于老师的作文]关于赞美老师的作文:我的老师_900字“老师... 2019-05-03
的作文一:写人的作文_800字刚开学,一个突如其来的消息传遍了我们班... 2019-04-23
篇一:[快乐来自于坚持600字]快乐,来自于坚持_550字幼鸟张开翅膀在... 2019-04-14
赞美老师的作文篇一:关于赞美老师的作文:我的老师_900字“老师”是... 2019-04-13
篇一:[外国名人故事]名人故事:外国数学名人故事诺伊曼(1903-1957... 2019-04-13
上一篇:一亿有多大数学手抄报(共9篇)
下一篇:代表地的汉字(共10篇)