第一课堂网
 数学 |  手机版 

栏目类型

数学

初中数学知识点总结

时间:2016-03-29 来源:数学 点击:

初中数学知识点总结篇1:初中数学知识点归纳讲解

  有理数
  正整数、0、负整数统称整数,正分数和负分数统称分数。
  整数和分数统称有理数。
  平面直角坐标系
  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
  三个规定:
  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
  初中数学知识点:平面直角坐标系的构成
  对于平面直角坐标系的构成内容,下面我们一起来学习哦。
  平面直角坐标系的构成
  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
  点的坐标的性质
  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
  一个点在不同的象限或坐标轴上,点的坐标不一样。
  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
  因式分解的一般步骤
  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点总结篇2:初二数学上知识点总结

  鉴于数学知识点的重要性,小编为您提供了这篇初二数学实数知识点总结,内容非常的详细具体,分类很清楚,希望对你有帮助。
  篇一:初二数学根式知识点总结
  前面章节讲述到了分式的具体知识内容,接下来就为大家带来根式的知识。
  根式
  若x的n次方=a,则x叫做a的n次方根,记作n√a=x,n√a叫做根式。根式的各部分名称 在根式n√a中,n叫做根指数,a叫做被开方数,“√”叫做根号。
  根式的性质
  根式n√a中,当n是奇数时,任何有理数都有n次方根,当n是偶数时,负数没有n次方根。0的任何次方根都为0。
  a^(m/n)=n√(a^m),a^(-m/n)=1/(n√(a^m)).(a>0,m,n∈N+,且n>1)。
  根式的性质(1)(n√a)^n=a
  根式的性质(2)n√(a^n)=|a| (n为偶数)
  =a (n为奇数)
  根式的知识要领不仅仅是上面的这些,以上为大家整合的都是精华部分。
  初中数学知识点总结:平面直角坐标系
  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
  平面直角坐标系
  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
  三个规定:
  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
  初中数学知识点:平面直角坐标系的构成
  对于平面直角坐标系的构成内容,下面我们一起来学习哦。
  平面直角坐标系的构成
  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
  初中数学知识点:点的坐标的性质
  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
  点的坐标的性质
  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
  一个点在不同的象限或坐标轴上,点的坐标不一样。
  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
  初中数学知识点:因式分解的一般步骤
  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
  因式分解的一般步骤
  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
  初中数学知识点:因式分解
  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
  因式分解
  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
  因式分解与整式乘法的关系:m(a+b+c)
  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
  提取公因式步骤:
  ①确定公因式。②确定商式③公因式与商式写成积的形式。
  分解因式注意;
  ①不准丢字母
  ②不准丢常数项注意查项数
  ③双重括号化成单括号
  ④结果按数单字母单项式多项式顺序排列
  ⑤相同因式写成幂的形式
  ⑥首项负号放括号外
  ⑦括号内同类项合并。

  篇二:初二数学根式知识点总结
  整式的除法:
  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
  希望同学们认真学习上面的知识点,相信老师对整式的除法知识点的总结一定能很好的帮助同学们的学习的。
  初中数学知识点总结:平面直角坐标系
  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
  平面直角坐标系
  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
  三个规定:
  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
  初中数学知识点:平面直角坐标系的构成
  对于平面直角坐标系的构成内容,下面我们一起来学习哦。
  平面直角坐标系的构成
  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
  初中数学知识点:点的坐标的性质
  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
  点的坐标的性质
  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
  一个点在不同的象限或坐标轴上,点的坐标不一样。
  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
  篇三:因式分解的一般步骤
  因式分解的一般步骤
  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
  初中数学知识点:因式分解
  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
  因式分解
  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
  因式分解与整式乘法的关系:m(a+b+c)
  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
  提取公因式步骤:
  ①确定公因式。②确定商式③公因式与商式写成积的形式。
  分解因式注意;
  ①不准丢字母
  ②不准丢常数项注意查项数
  ③双重括号化成单括号
  ④结果按数单字母单项式多项式顺序排列
  ⑤相同因式写成幂的形式
  ⑥首项负号放括号外
  ⑦括号内同类项合并。
  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

  篇四: 数学根式知识点总结
  整式的除法:
  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
  希望同学们认真学习上面的知识点,相信老师对整式的除法知识点的总结一定能很好的帮助同学们的学习的。
  初中数学知识点总结:平面直角坐标系
  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
  平面直角坐标系
  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
  三个规定:
  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
  初中数学知识点:平面直角坐标系的构成
  对于平面直角坐标系的构成内容,下面我们一起来学习哦。
  平面直角坐标系的构成
  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
  篇五:点的坐标的性质学习
  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
  点的坐标的性质
  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
  一个点在不同的象限或坐标轴上,点的坐标不一样。
  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
  初中数学知识点:因式分解的一般步骤
  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
  因式分解的一般步骤
  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
  篇六:因式分解法
  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
  因式分解
  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
  因式分解与整式乘法的关系:m(a+b+c)
  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
  提取公因式步骤:
  ①确定公因式。②确定商式③公因式与商式写成积的形式。
  分解因式注意;
  ①不准丢字母
  ②不准丢常数项注意查项数
  ③双重括号化成单括号
  ④结果按数单字母单项式多项式顺序排列
  ⑤相同因式写成幂的形式
  ⑥首项负号放括号外
  ⑦括号内同类项合并。
  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初中数学知识点总结篇3:北师大版初中数学知识点总结


  一直以来数学都是很多学生的薄弱科目,但是初中的学生一定要学好数学,因为数学在升中考的时候占据了很大的分值。下面是百分网小编为大家整理的初中数学知识归纳,希望对大家有用!

  初中数学知识

  1.基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形.

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相重合的边叫做对应边.

  ⑸对应角:全等三角形中互相重合的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边():三边对应相等的两个三角形全等.

  ⑵边角边():两边和它们的夹角对应相等的两个三角形全等.

  ⑶角边角():两角和它们的夹边对应相等的两个三角形全等.

  ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.

  ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.

  4.角平分线:

  ⑴画法:

  ⑵性质定理:角平分线上的点到角的两边的距离相等.

  ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.

  5.证明的基本方法:

  ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶

  角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

  ⑵根据题意,画出图形,并用数字符号表示已知和求证.

  ⑶经过分析,找出由已知推出求证的途径,写出证明过程.

  初中数学必备知识

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相

  重合,这个图形就叫做轴对称图形.

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一

  个图形重合,那么就说这两个图形关于这条直线对称.

  ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这

  条线段的垂直平分线.

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫

  做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做

  底角.

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形.

  2.基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一

  对对应点所连线段的垂直平分线.

  ②对称的图形都全等.

  ⑵线段垂直平分线的性质:

  ①线段垂直平分线上的点与这条线段两个端点的距离相等.

  ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.

  ⑶关于坐标轴对称的点的坐标性质

  初中数学重点知识

  一)运用公式法:

  我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  (二)平方差公式

  1.平方差公式

  (1)式子: a2-b2=(a+b)(a-b)

  (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

  (三)因式分解

  1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

  2.因式分解,必须进行到每一个多项式因式不能再分解为止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2-2ab+b2 =(a-b)2

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

  把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

  上面两个公式叫完全平方公式。

  (2)完全平方式的形式和特点

  ①项数:三项

  ②有两项是两个数的的平方和,这两项的符号相同。

  ③有一项是这两个数的积的两倍。

  (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

  (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

猜你喜欢:

1.初一数学知识点

2.初一数学知识学期总结

3.八年级数学知识要点总结

4.八年级数学必备知识点归纳

5.2018初中数学学习十大技巧

6.八年级上册重要的数学知识点

推荐访问:初中数学知识点归纳

上一篇:二年级数学下册
下一篇:爱因斯坦名言