小学数学所有的知识
小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1.(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减.(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的.(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读.(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”.(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减.(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几.(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小.(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来.(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小.(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”.(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零.(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推.(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点.(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点.(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除.(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算.(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案.(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案.(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减.(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来.(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算.(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变.(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母.(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数.(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位.(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数.二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长.2、什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积.3、加法各部分的关系:一个加数=和-另一个加数4、减法各部分的关系:减数=被减数-差 被减数=减数+差5、乘法各部分之间的关系:一个因数=积÷另一个因数6、除法各部分之间的关系:除数=被除数÷商 被除数=商×除数7、角(1)什么是角?从一点引出两条射线所组成的图形叫做角.(2)什么是角的顶点?围成角的端点叫顶点.(3)什么是角的边?围成角的射线叫角的边.(4)什么是直角?度数为90°的角是直角.(5)什么是平角?角的两条边成一条直线,这样的角叫平角.(6)什么是锐角?小于90°的角是锐角.(7)什么是钝角?大于90°而小于180°的角是钝角.(8)什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.8、(1)什么是互相垂直?什么是垂线?什么是垂足?两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.(2)什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离.9、三角形(1)什么是三角形?有三条线段围成的图形叫三角形.(2)什么是三角形的边?围成三角形的每条线段叫三角形的边.(3)什么是三角形的顶点?每两条线段的交点叫三角形的顶点.(4)什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形.(5)什么是直角三角形?有一个角是直角的三角形叫直角三角形.(6)什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形.(7)什么是等腰三角形?两条边相等的三角形叫等腰三角形.(8)什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰.(9)什么是等腰三角形的顶点?两腰的交点叫做等腰三角形的顶点.(10)什么是等腰三角形的底?在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底.
(11)什么是等腰三角形的底角?底边上两个相等的角叫等腰三角形的底角.(12)什么是等边三角形?三条边都相等的三角形叫等边三角形,也叫正三角形.(13)什么是三角形的高?什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底.(14)三角形的内角和是多少度?三角形内角和是180°.10、四边形(1)什么是四边形?有四条线段围成的图形叫四边形.(2)什么是平等四边形?两组对边分别平行的四边形叫做平行四边形.(3)什么是平行四边形的高?从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高.(4)什么是梯形?只有一组对边平行的四边形叫做梯形.(5)什么是梯形的底?在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底).(6)什么是梯形的腰?在梯形里,不平等的一组对边叫梯形的腰.(7)什么是梯形的高?从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高.(8)什么是等腰梯形?两腰相等的梯形叫做等腰梯形.11、什么是自然数?用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数).12、什么是四舍五入法?求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1.这种求近似数的方法,叫做四舍五入法.13、加法意义和运算定律(1)什么是加法?把两个数合并成一个数的运算叫加法.(2)什么是加数?相加的两个数叫加数.(3)什么是和?加数相加的结果叫和.(4)什么是加法交换律?两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律.14、什么是减法?已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法.15、什么是被减数?什么是减数?什么叫差?在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差.16、加法各部分间的关系:和=加数+加数 加数=和-另一加数17、减法各部分间的关系:差=被减数-减数 减数=被减数-差 被减数=减数+差18、乘法(1)什么是乘法?求几个相同加数的和的简便运算叫乘法.(2)什么是因数?相乘的两个数叫因数.(3)什么是积?因数相乘所得的数叫积.(4)什么是乘法交换律?两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律.(5)什么是乘法结合律?三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律.19、除法(1)什么是除法?已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法.(2)什么是被除数?在除法中,已知的积叫被除数.(3)什么是除数?在除法中,已知的一个因数叫除数.(4)什么是商?在除法中,求出的未知因数叫商.20、乘法各部分的关系:积=因数×因数 一个因数=积÷另一个因数21、(1)除法各部分间的关系:商=被除数÷除数 除数=被除数÷商(2)有余数的除法各部分间的关系:被除数=商×除数+余数22、什么是名数?通常量得的数和单位名称合起来的数叫名数.23、什么是单名数?只带有一个单位名称的数叫单名数.24、什么是复名数?有两个或两个以上单位名称的数叫复名数.25、什么是小数?仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数.
初中数学知识汇总
初中数学初中必背公式与定理
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆.
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h
正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"
圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
小学数学知识大全的答案(河海大学出版社)
数的认识,数的运算,试与方程和分数与百分数应用问题.
124+10"12578+96387
小学数学知识大全第26页第4题怎么做,
40X8%=3.2,3.2X20%=6(千克)【数学知识大全】
《小学数学知识大全》119页第4题怎么做,
妈妈:3300=2000+500+800
500×5%+800×10%
爸爸:4900=2000+500+1500+900
500×5%+1500×10%+900×15%
小学一到五年级数学知识重点汇总(详细)
小学五年级全科目课件教案习题汇总语文数学
三 单 元
有两个相对的面是正方形,长方体中相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点.
2、正方体的特征:正方体有6个面,这6个面都是正方形,所有的面完全相同;有12条棱,所有的棱长度相等;有8个顶点. 正方体可以看成是长、宽、高都相等的长方体.
3、相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高. 4、长方体或者正方体的12条棱的总长度叫做他们的棱长总和. 长方体的棱长总和=(长+宽+高)×4, 用字母可以表示为=C长方体(a+b+h)4.
正方体的棱长总和=棱长×12,用字母可以表示为=12aC正方体. 5、长方体或者正方体6个面的总面积叫做它的表面积.
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为
=(ab+ah+bh)2S长方体.
正方体的表面积=棱长×棱长×6,用字母表示为2=6aS正方体. 6、物体所占空间的大小叫做物体的体积.
计量体积要用体积单位,常用的体积单元有立方厘米、立方分米、立方米,用字母表示为3cm、3dm、3m.3311000dmcm,33
11000mdm. 7、棱长是1 cm的正方体,体积是13cm.一个手指尖的体积大约是13
cm.
棱长是1 dm的正方体,体积是13dm.一个粉笔盒的体积大约是13
cm.
棱长是1 m的正方体,体积是13
m.用3根1 m长的木条,做成一个互成直角的架子架在墙角,它的体积是13
cm.
8、长方体的体积=长×宽×高,用字母表示为=abhV长方体. 正方体的体积=棱长×棱长×棱长,用字母表示为3
=aV正方体. 长方体和正方体的统一公式:支柱体的体积=底面积×高.
9、容器所能容纳物体的体积,叫做它的容积.计量容积一般就用体积单位,计量液体的体积,常用容积单位升和毫升,用字母表示是L和ml.
4
311Ldm,311mlcm,11000Lml
10、长方体或正方体容器的容积的计算方法,跟体积的计算方法相同.但是要从容器里面量出长、宽、高.
11、形状不规则的物体,求他们的体积,可以用排水法.水面上升或者下降的那部分水的体积就是物体的体积.
第 四 单 元
一、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示.
2、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示.把什么平均分,什么就是单位“1”. 3、把单位“1”平均分成若干份,表示其中的一份的数叫做分数单位.一个分数的分母越大,分数单位越小;一个分数的分母越小,分数单位越大. 4、分数与除法的关系:分数可以表示整数除法的商;除法里的被除数相当于分数中的分子,除数相当于分数里的分母,出号相当于分数线. =
被除数被除数除数除数,=分子
分子分母分母
.
5、求一个数是另一个数的几分之几的解题方法:用除法计算. =一个数一个数另一个数另一个数
在解决问题中,要先找出单位“1”和比较量,一般来说,问题中“是”或“占”的后面是单位“1”,前面的比较量,如果没出现这两个字,要根据题意判断, 再根据公式“1=
1
比较量
比较量单位“”单位“” ”计算.
6、低级单位化高级单位(用分数表示)时,等于低级单位的数值两个单位间的进率
,能约分的要约成最简分数. 二、真分数和假分数
1、分子比分母小的分数叫做真分数,真分数小于1;
分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于1或等于1;
由整数部分(不包括0)和真分数合成的分数叫做带分数.
2、假分数化成整数或带分数,要用分子除以分母.当分子是分母的倍数时,
5
能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变.
3、带分数化成假分数,用原来的分母做分母,用分母和整数的乘积再加上原来的分子作分子,用式子表示成:+=分母整数分子带分数分母
三、分数的基本性质、约分、通分
1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.可以利用分数的基本性质,对分数进行约分或通分,或者把分母化成指定的分母或分子的分数.
2、两个数公有的因数,叫做它们的公因数.其中最大的公因数叫做它们的最大公因数.当两个数成倍数关系时,较小的数就是他们的最大公因数;当两个数只有公因数1时,它们的最大公因数就是1.(公因数只有1的两个数叫做互质数)
3、求两个数的最大公因数,可以用列举法分别列出这两个数的因数,再寻找公有的因数.也可以用短除法计算.
4、分子和分母只有公因数1的分数叫做最简分数.
把一个分数化成和它相等,但分子分母都比较小的分数叫做约分.约分时可以用分子和分母的公因数(1除外)去除,一步步来约分,也可以直接用最大公因数去除,直接约分.
5、两个数公有的倍数叫做它们的公倍数,其中最小的倍数叫做它们的最小公倍数.一般情况下,求一个数的倍数可以用列举法、图示法、大数翻倍法、短除法.当两个数是倍数关系时,大数就是它们的最小公倍数;互质的两个数的最小公倍数是它们的积.
6、把异分母分数分别化成和原来的分数相等的同分母分数,叫做通分. 四、分数和小数的互化 1、小数化分数的方法
小数化成分数时,小数部分有几位小数,就在1后面写几个“0”作分母,把原来的小数去掉小数点后作分子.小数化成分数后,能约分的要约成最简分数.
2、分数化小数的方法
6
①分母是10,100,1000„的分数化成小数,可以直接去掉分母,看分母1后面后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点;分子位数不足时,用0补足,整数部分写0.
②不是以上这些特征的分数时,要用分子除以分母.除不尽的,根据“四舍五入”法保留一定的位数.
3、判断一个分数是否能化成有限小数的方法:一个最简分数,如果坟墓中只含有质因数2或5,这个分数就能化成有限小数. 4、比较几个数的大小
如果只有两个分数要比较大小:①分母相同的,分子大的分数就大;②分子相同的,分母越大的分数反而越小;③分子、分母都不相同的,要化成分母相同的分数再比较.
几个数比较大小,包含分数和小数时,一般把分数化成小数后再比较大小,最后需要比较的是原数的大小.(需要特别注意是从大到小排列时要用大于号连接;而小到大排列,用小于号连接)
第 五 单 元
1、同分母分数相加减,计算时,分母不变,只是把分子相加减.
2、计算时要注意:当计算的结果是假分数时,要化成整数或带分数;当计算的结果能约分的,一定要约成最简分数;当几个分数相减,分子等于0时,这个分数就是0.
3、任意一个自然数(1除外)作为分母的所有最简真分数的和,等于最简真分数的个数除以2.
4、计算异分母分数加减法,因为分母不同,就意味着分数单位不同,不能直接相加减.根据分数的基本性质,先进行通分,然后再按照同分母的分数加减法的计算法则进行计算.
5、分数加减混合运算的运算顺序和整数加减混合运算的顺序相同,即从左到右依次计算,有括号的要先算括号里面的.整数加法的交换律、结合律、减法的性质对于分数加减法仍然适用.
第六 单元 1、在一组数据中,出现次数最多的数就是这组数据的众数,众数能够反映一组数据的集中程度.
2、在一组数据中,众数可能不止一个,也可能没有众数.
数学中的全集知识、
一、全集、补集概念:
1.全集:含有我们所研究问题中所涉及的所有元素构成的集合,记作U,是相对于所研究问题而言的一个相对概念.
2.补集:设全集为U,集合A是U的一个子集(即AU),则由U中所有
不属于A的元素组成的集合,叫作U中子集A的补集(或余集),记作:
,读作:"A在U中补集",即.补集的
Venn图表示如右:
(说明:补集的概念必须要有全集的限制)②结论:集合是集合U
中除去集合A之后余下来的集合.
《小学数学知识大全》55,56,117-121的答案是虾米
55页的
37.68千克 48个 97.968千克
现实应用题 1 略 2 不属实,因为纸盒的体积为240立方厘米,他的容积要小于240毫升
3 两种容器容积相得 4 能
其他的我不打了,好多呢,我觉得知识大全好难啊 !【数学知识大全】
一至六年级所有的数学知识及概念
常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长 )
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本; 利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比; 利息=本金×利率×时间; 税后利息=本金×利率×时间×(1-20%)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算: 1元=10角 1角=10分 1元=100分
时间单位换算:
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
基本概念
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义: 自然数和0都是整数.
2 自然数:
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.
一个物体也没有,用0表示.0也是自然数.
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.
每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法.
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a .
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).倍数和约数是相互依存的.
因为35能被7整除,所以35是7的倍数,7是35的约数.
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身.例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10.
一个数的倍数的个数是无限的,其中最小的倍数是它本身.3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数.
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除..
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除..
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除.
一个数各位数上的和能被9整除,这个数就能被9整除.
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除.
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除.例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除.
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除.例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除.
能被2整除的数叫做偶数.
不能被2整除的数叫做奇数.
0也是偶数.自然数按能否被2 整除的特征可分为奇数和偶数.
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数.
1不是质数也不是合数,自然数除了1外,不是质数就是合数.如果把自然数按其约数的个数的不同分类,可分为质数、合数和1.
每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数.
把一个合数用质因数相乘的形式表示出来,叫做分解质因数.
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数.
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质.
相邻的两个自然数互质.
两个不同的质数互质.
当合数不是质数的倍数时,这个合数和这个质数互质.
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质.
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数.
如果两个数是互质数,它们的最大公约数就是1.
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数..
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数.
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数.
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的.
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示.
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成.数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分.
在小数里,每相邻两个计数单位之间的进率都是10.小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10.
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数.例如: 0.25 、 0.368 都是纯小数.
带小数:整数部分不是零的小数,叫做带小数. 例如: 3.25 、 5.26 都是带小数.
有限小数:小数部分的数位是有限的小数,叫做有限小数. 例如: 41.7 、 25.3 、 0.23 都是有限小数.
无限小数:小数部分的数位是无限的小数,叫做无限小数. 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数. 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数. 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节. 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” .
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数. 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数. 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点.如果循环 节只有 一个数字,就只在它的上面点一个点.例如: 3.777 …… 简写作 0.5302302 …… 简写作 .
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数.
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份.
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位.
2 分数的分类
真分数:分子比分母小的分数叫做真分数.真分数小于1.
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于或等于1.
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数.
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分.
分子分母是互质数的分数,叫做最简分数.
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.
运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a .
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) .
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a.
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) .
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c .
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) .
数学简单知识
数字全部是1的数记为L(n)=[1……1](n个1)(n>=2).有人对L(2)到L(358)的所有数进行研究,发现除了L(2),L(19),L(23),L(317)外都是合数,观察L(2),L(19),L(23),L(317)都是素数,根据以上信息,提出一些有价值的问题,并证之.
L(n)是素数,那么L(n)中的n也都是素数
L(n)-L(n-1)=10^(n-1)
n=lg[L(n)-L(n-1)]+1